Ratios \& Proportional Relationships 6.RP	The Number System 6.NS	Expressions \& Equations 6.EE	Geometry 6.G
Understand ratio concepts and use ratio reasoning to solve problems. 1. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes." 2. Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." ${ }^{11}$ 3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent. d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities. ${ }^{1}$ Expectations for unit rates in this grade are limited to non-complex fractions.	Apply and extend previous understandings of multiplication and division to divide fractions by fractions. 1. Interpret and compute quotients of fractions, and solve word problems involving 1. Interpret and compute quotients of racions, and solve division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) $\div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (ln general, (a/b) $\div(\mathrm{c} / \mathrm{d})=a \mathrm{ad} / \mathrm{bc}$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square m ? Compute fluently with multi-digit numbers and find common factors and multiples. 2. Fluently divide multi-digit numbers using the standard algorithm. 3. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. 4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whol numbrs 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers $1-100$ with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$. Apply and extend previous understandings of numbers to the system of rational numbers. 5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. 6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own ppposite. b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other 7. Understand ordering and absolute value of rational numbers. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right. b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$. that $-3{ }^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$. on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $\|-30\|=30$ to describe the size of the debt in dollars. d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than - 30 dolars represents a debt greater than 30 dollars. 8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same to find distances between points with the same first coordinate or the same second coordinate. nate.	Apply and extend previous understandings of arithmetic to algebraic expressions. 1. Write and evaluate numerical expressions involving whole-number exponents. 2. Write, read, and evaluate expressions in which letters stand for numbers. Write expressions that record operations with numbers and with etters standing for numbers. For example, express the calculation "Subtract y from 5^{5} as $5-y$. product, factor, quotionstonfusing manemaicical erms sum, term, expression as a single entity. For example, describe the expression $2(8+$ 7) as a product of two factors: view ($8+7$) as both a single entity and a Eum of two terms. xpressions thestans a specific values of their variables. Include Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the cube with sides of length $s=1 / 12$. 3. Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x$ +18 to produce the equivalent texpression $6(4 x+3 y)$; apply pro operations to $y+y+y$ to produce the equivalent expression $3 y$. 4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for same number regardless of which number y stands for. Reason about and solve one-variable equations and inequalities. 5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. . 6. Use variables to represent numbers and write expressions when solving a realworld or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. 8. Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams. inequalities on number line diagrams. Represent and analyze quantitative relationships between dependent and independent variables. 9. Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.	Solve real-world and mathematical problems involving area, surface area, and volume. 1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems. 2. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems. 3. Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems. 4. Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Mathematics Common Core Learning Standards-Grades 6-8
The Number System
8.NS
Know that there are numbers that are n

Expressions \& Equations

 8.EEWork with radicals and integer exponents. 1. Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=$ 1/27.
2. Use so
2. Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational
number. Evaluate suar number. Evaluate square roots of small perfect squares
roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational. 3. Use numbers expressed in the form of a single digitit times a wholeand to express how many times as much one is than the quantities, and to express how many times as much one is than the other. For
example, estimate the population of the United States as 3 times 10^{8} exanme, estimate the population of the United states as simes $10{ }^{\text {and }}$ and the population of the world as 7 times 10 , and determine that the world population is more than 20 times larger. operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are
used. Use scientific notation and choose csed. Use scientific notation and choose units of appropriate size for
measurements of very large or very small quantities (es measurements of very large or very small quantities (e.g., use
millimeters per year for seafloor spreading). Interpet scientific milimeters per year or seafioor spreading). Itererp.
notation that has been generated by technology.

Understand the connections between proportio relationships, lines, and linear equations.
5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a aistance--ime eq.
objects has greater speed.
objects has greater speed.
6. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the

Analyze and solve linear equations and pairs of simultaneous linear equations.
7. Solve inear equations in one variable.
a. Give examples of inear equations in one variable with one solution, infinitely many solutions, or no solutions. how which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x numbers).
b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using he distributive property and
collecting like terms.
-. Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points intersection satisfy both equations simultaneously.
b. Solve systems of two inear equations in two variables algebraically, and estimate solutions by graphing the
equations. Solve simple cases by inspection For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution
because $3 x+2 y$ cannot simultaneously be 5 and 6 . c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example,
given coordinates for two pais of points, determine whether the line through the first pair of points intersects the line through the second pair

Functions

8.F

Define, evaluate, and compare functions

1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. ${ }^{1}$
2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verba descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change
3. Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is no linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

Use functions to model relationships between quantities.
4. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values
5. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing o decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
${ }^{1}$ Function notation is not required in Grade 8

Geometr

$8 . G$
Understand congruence and similarity using physical models, transparencies, or geometry software.

1. Verify experimentally the properties of rotations, reflections, and translations:
a. Lines are taken to lines, and line segments to
line segments of the same length.
b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines. 2. Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them
2. Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
3. Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them
4. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.

Understand and apply the Pythagorean Theorem. 6. Explain a proof of the Pythagorean Theorem and its converse.
7. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
8. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres 9 . Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve realworld and mathematical problems.

Statistics \& Probability

8.SP

nvestigate patterns of association in

 bivariate data.1. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities Describe patterns such as clustering, outliers positive or negative association, linear association, and nonlinear association.
2. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
3. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
4. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?
