Counting and Cardinality K.CC	Operations \& Algebraic Thinking K.OA	Number \& Operations in Base Ten K.NBT	Measurement \& Data PK.MD	Geometry PK.G
Know number names and the count sequence. 1. Count to 100 by ones and by tens. 2. Count forward beginning from a given number within the known sequence (instead of having to begin at 1). 3. Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects). Count to tell the number of objects. 4. Understand the relationship between numbers and quantities; connect counting to cardinality. a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. c. Understand that each successive number name refers to a quantity that is one larger. Develop understanding of ordinal numbers (first through tenth) to describe the relative position and magnitude of whole numbers. 5. Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects. Compare numbers. 6. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. ${ }^{1}$ 7. Compare two numbers between 1 and 10 presented as written numerals. ${ }^{1}$ Include groups with up to ten objects.	Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from. 1. Represent addition and subtraction with objects, fingers, mental images, drawings ${ }^{1}$, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. 2. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 3. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1$). 4. For any number from 1 to 9 , find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation. 5. Fluently add and subtract within 5 . ${ }^{1}$ Drawings need not show details, but should show the mathematics in the problem. (This applies wherever drawings are mentioned in the Standards.)	Work with numbers 11-19 to gain foundations for place value. 1. Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as $18=10+8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.	Describe and compare measurable attributes. 1. Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. 2. Directly compare two objects with a measurable attribute in common, to see which object has "more of""/less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter. Classify objects and count the number of objects in each category. 3. Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. ${ }^{1}$ ${ }^{1}$ Limit category counts to be less than or equal to 10.	Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). 1. Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. 2. Correctly name shapes regardless of their orientations or overall size. 3. Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). Analyze, compare, create, and compose shapes. 4. Analyze and compare two- and threedimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). 5. Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes. 6. Compose simple shapes to form larger shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?"

Operations \& Algebraic Thinking

 1.OA
Represent and solve problems involving

addition and subtraction

1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. ${ }^{1}$
2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Understand and apply properties of operations and the relationship between addition and subtraction.
3. Apply properties of operations as strategies to add and subtract. ${ }^{2}$ Examples: If $8+3=11$ is known, then $3+8=11$ is also known. (Commutative property of addition.) To add $2+6$ +4 , the second two numbers can be added to make a ten, so $2+6+4=2+10=12$. (Associative property of addition.)
4. Understand subtraction as an unknownaddend problem. For example, subtract 10-8 by finding the number that makes 10 when added to 8. Add and subtract within 20.

Add and subtract within 20.
5. Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).
6. Add and subtract within 20 , demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on;
making ten (e.g., $8+6=8+2+4=10+4=\quad$ Number \& Operations in Base Ten 14); decomposing a number leading to a ten (e.g., 13-4 = 13-3-1 = 10-1 = 9); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8$ $=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1=12+1=13$).

Work with addition and subtraction

equations.

7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6=6,7=8-1,5+2=2+5,4+1=5+$ 2.
8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8+?=11,5=-3,6+6$ $=$.

${ }^{1}$ See Glossary, Table

${ }^{2}$ Students need not use formal terms for these properties.
1.NBT

Extend the counting sequence.

1. Count to 120 , starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.

Understand place value.

2. Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the
following as special cases:
a. 10 can be thought of as a bundle of ten ones called a "ten."
b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones
C. The numbers $10,20,30,40,50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones)
3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.

Use place value understanding and properties of operations to add /subtract.
4. Add within 100 , including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten
5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.
6. Subtract multiples of 10 in the range $10-90$ from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Meas

Measure lengths indirectly and by iterating length units.

1. Order three objects by length; compare the lengths of two objects indirectly by using a third object.
2. Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

Tell and write time and money

3. Tell and write time in hours and half-hours using analog and digital clocks.

Recognize and id

 and their value.
Represent and interpret data.

4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

Geometry
1.G

Reason with shapes and their attributes

1. Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus nondefining atributes (e.g., color, orientation, overall size) ; build and draw shapes to possess defining attributes.
2. Compose two-dimensional shapes
(rectangles, squares, trapezoids, triangles, halfcircles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. ${ }^{1}$
3. Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.
${ }^{1}$ Students do not need to learn formal names such as "right rectangular prism."

Operations \& Algebraic Thinking

2.OA

Represent and solve problems involving addition and subtraction.

1. Use addition and subtraction within 100 to solve oneand two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. ${ }^{1}$

Add and subtract within 20.

2. Fluently add and subtract within 20 using mental strategies. ${ }^{2}$ By end of Grade 2, know from memory all sums of two one-digit numbers.

Work with equal groups of objects to gain

foundations for multiplication.

3. Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.
4. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

See Glossary, Table 1.

${ }^{2}$ See standard 1.0A.6 for a list of mental strategies.

Number \& Operations in Base Ten

2.NBT

Understand place value.

1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, tens, and 6 ones. Understand the following as special cases:
a. $\quad 100$ can be thought of as a bundle of ten tens - called a "hundred."
b. The numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).
2. Count within 1000; skip-count by $5 \mathrm{~s}, 10$ s, and 100 s
3. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
4. Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, $=$, and < symbols to record the results of comparisons.

Use place value understanding and properties of

 operations to add and subtract.5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction
6. Add up to four two-digit numbers using strategies based on place value and properties of operations
7. Add and subtract within 1000 , using concrete models or drawings and strategies based on place value, properties of operations, and/o the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting threedigit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.
8. Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.
9. Explain why addition and subtraction strategies work, using place value and the properties of operations. ${ }^{1}$

Explanations may be supported by drawings or objects.

Measurement \& Data

2.MD

Measure and estimate lengths in standard units.

1. Measure the length of an object by selecting and using
appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes
2. Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen. 3. Estimate lengths using units of inches, feet, centimeters, and meters.
3. Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.

Relate addition and subtraction to length

5. Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represen the problem.
6. Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.

Work with time and money.

7. Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.
8. Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ and ϕ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?

Represent and interpret data

9. Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.
10. Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems ${ }^{1}$ using information presented in a bar graph

Geometry

2.6

Reason with shapes and their attributes.

1. Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. ${ }^{1}$ Identify triangles, quadrilaterals, pentagons, hexagons and cubes
2. Partition a rectangle into rows and columns of same-size squares and count to find the total number of them
3. Partition circles and rectangles into two, three, or four equa shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape

Sizes are compared directly or visually, not compared by measuring

Mathematics Common Core Learning Standards-Grades K-5

Operations \& Algebraic Thinking 3.0A	Number \& Operations in Base Ten 3.NBT	Number \& Operations - Fractions 3.NF	Measurement \& Data 3.MD	$\begin{aligned} & \text { Geometry } \\ & \text { 3.G } \\ & \hline \end{aligned}$
Represent and solve problems involving multiplication and division. 1. Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7. 2. Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$. 3. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. ${ }^{1}$ 4. Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5={ }_{-} \div 3,6 \times 6=$? Understand properties of multiplication and the relationship between multiplication and division. 5. Apply properties of operations as strategies to multiply and divide. ${ }^{2}$ Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by 3 $\times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and 8 $\times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=40+16$ $=56$. (Distributive property.) 6. Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 . Multiply and divide within 100. 7. Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times$ $5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. Solve problems involving the four operations, and identify and explain patterns in arithmetic. 8. Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. ${ }^{3}$ 9. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends. ${ }^{1}$ See Glossary, Table 2. ${ }^{2}$ Students need not use formal terms for these properties. ${ }^{3}$ This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order.	Use place value understanding and properties of operations to perform multidigit arithmetic. ${ }^{1}$ 1. Use place value understanding to round whole numbers to the nearest 10 or 100 . 2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. 3. Multiply one-digit whole numbers by multiples of 10 in the range $10-90$ (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations. ${ }^{1} \mathrm{~A}$ range of algorithms may be used.	Develop understanding of fractions as numbers. 1. Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$. 2. Understand a fraction as a number on the number line; represent fractions on a number line diagram. a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line. 3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. b. Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent, e.g., by using a visual fraction model. c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate $4 / 4$ and 1 at the same point of a number line diagram. d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, $=$, or <, and justify the conclusions, e.g., by using a visual fraction model. ${ }^{1}$ Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6,8$.	Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. 1. Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram. 2. Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). ${ }^{1}$ Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. ${ }^{2}$ Represent and interpret data. 3. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets. 4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters. Geometric measurement: understand concepts of area and relate area to multiplication and to addition. 5. Recognize area as an attribute of plane figures and understand concepts of area measurement. a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units. 6. Measure areas by counting unit squares (square cm , square m , square in, square ft, and improvised units). 7. Relate area to the operations of multiplication and addition. a. Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. b. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent wholenumber products as rectangular areas in mathematical reasoning. c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems. Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures. 8. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	Reason with shapes and their attributes. 1. Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. 2. Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.

Mathematics Common Core Learning Standards-Grades K-5

Operations \& Algebraic Thinking	Number \& Operations in Base Ten

4.OA
Use the four operations with whole numbers to
solve problems.

1. Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. ${ }^{1}$
3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Gain familiarity with factors and multiples. 4. Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of number in the range 1-100 is a multiple of a given ne digit number Determine whether a given whole number in the range $1-100$ is prime or composite.

Generate and analyze patterns.
5. Generate a number or shape pattern that follows a 5. Generate a number or shape pattern that follows given rule. Identify apparent features of the patter given the rule "Add 3" and the starting number 1 gre that the torms appear to alternate betwe and observe hat the terms appear to atternate between odd and will continue to alternate in this way.

See Glossary, Table 2

Number \& Operations in Base Ten 4.NBT Generalize place value understanding for multidigit whole numbers.

1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that 700 $\div 70=10$ by applying concepts of place value and division.
2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, $=$, and < symbols to record the results of comparisons.
3. Use place value understanding to round multi-digit whole numbers to any place.

Use place value understanding and properties of operations to perform multi-digit arithmetic.
4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.
5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of perations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
${ }^{1}$ Grade 4 expectations in this domain are limited to whole numbers less than or equal to $1,000,000$

Nu	
4.N	
	Ext

Extend un ordering.

Ordering.

1. Explain why a fraction alb is equivalent to a fraction $(n \times a) /(n \times b)$ by using
sual inaction modeds with
 differ even though the two fractions thenselves are the sal
principl torecogniza and generate equivent ractions.
2. Compare two tractions with different
3. Compare two fractions with difierent numeratiors and different denominatorors,
 the two fractions refer to the same whole Record the results afs formparid ons when with symbols
model.
Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
Whole numb
4. Understand a f
a.
Understand with a> 1 as a sum of fractions $1 / 1 /$.
b. \qquad Decompose a araction into a sum of fractions wit decomposition by an an equation. Uustify decomposcitions, ea, by
 Add and subtract mixed numbers with like denominiators, e.e, by replacing each mixed number with an equivilent fraction, andlor
by using properities of operations and the elationstip petween Solve word problems involving addition and subtraction of
fractions refering to the same whale and denominators, e.g., by suing visual fraction models and equation
Apply and extend
a a whole number
visual fraction modiod to o epes a multiple of 11 b . For example, use a

c. Solve word problems involving multipication of a traction by a Whole number, e.g., by using isual fraction models and
equations to reperenent the problem For exampe if each
 people at the party, how many pounds of foast beef will be
needd? Between what two whole numbers does youranswer
lie?

Understand decimal notation for fractions, and compar decimal fractions. Expressa faction with denominator 10 as an equivielent fraction with-
 6. Use decimal notation for fractions with denominators 10 or 100 . For example, rewitit 0.62 .
line diagram.
Ine diagram. two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimalas refér to the same whole
Record the results of ocmpaisons with the symbols $>,=$, or $<$, and j ustify the Recort heresuitis of comparisons with the
conclusions, e.9., by using a wisual model

Grade 4 expectations in $3,5,5,6,8,10,12,100$

, $4,5,6,0,1,12,100$. adding fractions with unike edeqnominaiators is ingeneral. But addodition and subtial addining fractions with unikik denominiator in general. But addition and
with

Measurement \& Data

4.MD

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 1. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express
the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12) (2, 24), (3, 36), ... 2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, incluaing problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scain
3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.
Represent and interpret data
4. Make a line plot to display a data set of measurements in fractions of a unit $(1 / 2,1 / 4,1 / 8)$. Solve problems involving presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

Geometric measurement: understand concepts of angle and measure angles.
5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and
a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns throug $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.
b. An angle that turns through n one-degree angles is said to have an angle measure of n degree 6. Measure Sketch angles of specified measure. 7. Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

Geometry

4.6

Draw and identify lines and angles, and classify shapes by properties of their lines and angles. 1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
2. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and dentify right triangles.
3. Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. dentify line-symmetric figures and draw lines of symmetry.

Operations \& Algebraic Thinking

5.OA

Write and interpret numerical expressions 1. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
2. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8$ $+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.

Analyze patterns and relationships.
3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so

Number \& Operations in Base Ten 5.NBT

Understand the place value system. 1. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in place represents it right and $1 / 10$ of what it represents in the place to its left.
2. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , product when multiplying a number by powers of 10 , and explain patterns in the placement of the decima power of 10 Use whe number exponen to de power of 10 . whole-number exponents to denote powers of 10 .
3. Read, write, and compare decimals to thousandths.
a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times$ $100+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times$ $(1 / 100)+2 \times(1 / 1000)$
b. Compare two decimals to thousandths based on meanings of the digits in each
place, using > $=$ and $<$ symbols the results of comparisons.
4. Use place value understanding to round decimals to any place.

Perform operations with multi-digit whole numbers and with decimals to hundredths.
5. Fluently multiply multi-digit whole numbers using the standard algorithm.
6. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Number \& Operations - Fractions

 5.NF Use equiv.fractions.

 raction modeds or equations to represesnt the problem. Use benchmark traction and umber sense of fracions to estimate mentalyy and assess the
reasonableness of answers. For example, recognize an incorrect result $25+1 / 2$ $=37$, by obsenering that $3 / 7 /<1 / 2$.
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
3. Interpete faraction as division of the enumerator by the denonimator (alb $=a+$ D). Solve erord problems involving division of whole numbers leading to answers
hithe form of tractions or mixed dumbers, e.9., by using visual traction models of equations to reperesent the problem. For example, interpret 3 as as the result of
dividing $35 y$, noting that $3 / 4$ multipied by 4 equals 3 , and that when 3 whodes

 Lounds of tiee should each person get? Between what two whole numbers does
youranswer ie? 4.Apply and dextend revevius understandings of multipication to multiply a fraction
C. whole number by a fraction. ar whole number by fraction.
 For example, use a visulal fraction modeductone of ow operations $(23) \times 4=8 \times q=0$.

Find the area of a rectangle with fractional side lengths by tiing it with unit squares of the approppriate unit fraction sidel lengths, and show that the Muttiply fracitiona sas side lengthst to to find areaces of of rectingles, and reperesent
the size of the other factoro, without pertorming the indicicated multipicication
 results in a product greater than the given number (recogniing
multipication by whole umbers greaeier than 1 as \mathbf{a} familiar case); explaining why multiplying a given number by atraction less than
result in a p product smaller than the given number and relating the
 multiplying alb by 1
6. Solve real world problems involving multipicication of fractions and mixed
numbers, e. 9 , by
using visual fraction models ore equations to reperesent the numbers, e.
problem.
7. Apply and extend previous understandings of division to divide unit fractions by Whole numbers and whole numbers by unit fractions. 1

Interppet division of a unit fracion by a non-zero whole number and

 between multipicication and
because $(1 / 12) \times 4=13$.
Secause (1 112) $\times 4=1 / 13$.
Interper disision of afole number by a unit fraction, and compute such
 Visulal fraction model to show the quotient. Use the relationship between $(1 / 5)=4$.
Solve real wo
Solve real word problems involving division of unit fracions by non-zero
 using visul fraction models and equations to represent the problem. For
example, how much hococolate will each person get if 3 people share $1 / 2$

 and division. But division of a traction by a fraction is not a requirement atthis

Measurement \& Data

5.MD

Convert like measure

measurement system.

1. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems

Represent and interpret data

2. Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$) Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.
Geometric measurement: understand concepts of volume and relate volume to multiplication and to

volume

3. Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.
b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.
4. Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft, and improvised units.
5. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
b. Apply the formulas $V=1 \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context
of solving real world and mathematical problems. Recognize volume as additive Find volumes of sold figures composed of two non-overlapping right ectangular prisms by adding the volumes of the noroverlapping parts, applying this technique to solve real world problems.

Geometry

5.G

Graph points on the coordinate plane to solve realworld and mathematical problems.

1. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on (ine and a given point oride whe the on each line and a given point in called its coordinates. Understand that the first number dicates how far to travel from the origin in the indicates how ar to travel from the origin in the drew for to travel in the direction of the second axis, with the convention that the names of the ond axis and the coordinates correspond (e, g x-axis and x and the coor axis and y-coordina). x-axis and x coordinate, y-axis and y-coordinate)
2. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Classify two-dimensional figures into categories based on their properties.
3. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
4. Classify two-dimensional figures in a hierarchy based on properties.

